Energy-based Generative Adversarial Network
نویسندگان
چکیده
We introduce the “Energy-based Generative Adversarial Network” model (EBGAN) which views the discriminator as an energy function that associates low energies with the regions near the data manifold and higher energies with other regions. Similar to the probabilistic GANs, a generator is trained to produce contrastive samples with minimal energies, while the discriminator is trained to assign high energies to these generated samples. Viewing the discriminator as an energy function allows to use a wide variety of architectures and loss functionals in addition to the usual binary classifier with logistic output. Among them, an instantiation of EBGAN is to use an auto-encoder architecture, with the energy being the reconstruction error. We show that this form of EBGAN exhibits more stable behavior than regular GANs during training. We also show that a singlescale architecture can be trained to generate high-resolution images.
منابع مشابه
Automatic Colorization of Grayscale Images Using Generative Adversarial Networks
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...
متن کاملModeling documents with Generative Adversarial Networks
This paper describes a method for using Generative Adversarial Networks to learn distributed representations of natural language documents. We propose a model that is based on the recently proposed Energy-Based GAN, but instead uses a Denoising Autoencoder as the discriminator network. Document representations are extracted from the hidden layer of the discriminator and evaluated both quantitat...
متن کاملImprovement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملTensor-Generative Adversarial Network with Two-dimensional Sparse Coding: Application to Real-time Indoor Localization
Localization technology is important for the development of indoor location-based services (LBS). Global Positioning System (GPS) becomes invalid in indoor environments due to the non-line-of-sight issue, so it is urgent to develop a real-time high-accuracy localization approach for smartphones. However, accurate localization is challenging due to issues such as real-time response requirements,...
متن کاملSSGAN: Secure Steganography Based on Generative Adversarial Networks
In this paper, a novel strategy of Secure Steganograpy based on Generative Adversarial Networks is proposed to generate suitable and secure covers for steganography. The proposed architecture has one generative network, and two discriminative networks. The generative network mainly evaluates the visual quality of the generated images for steganography, and the discriminative networks are utiliz...
متن کاملStackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks
Although Generative Adversarial Networks (GANs) have shown remarkable success in various tasks, they still face challenges in generating high quality images. In this paper, we propose Stacked Generative Adversarial Networks (StackGAN) aimed at generating high-resolution photorealistic images. First, we propose a two-stage generative adversarial network architecture, StackGAN-v1, for textto-imag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1609.03126 شماره
صفحات -
تاریخ انتشار 2016